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STATISTICAL APPROACH TOWARDS SUBSEASONAL PREDICTION 

OVER THE MARITIME CONTINENT 

 

Norlaila Ismail and Changhyun Yoo 

 

Abstract 

 

Weather and climate prediction over the Maritime Continent (MC) remains as a 

challenge due to its complex mix of islands and seas as well as its mountainous topography. In 

general, the weather and climate of the region are contributed by climates in various temporal 

and spatial scales. Among which are the interannual variability associated with the El-Niño 

Southern Oscillation (ENSO) and the stratospheric Quasi-Biennial Oscillation (QBO). The 

Madden-Julian Oscillation (MJO) also has the capability of modulating intraseasonal convection 

activity over the MC region. Previous studies have shown successes in generating a future 

prediction using statistical methods. Some of these works employed climate variability as the 

source of predictability in their models. Motivated by this, we construct simple and multiple 

linear least-square regression models using climate indices mentioned above to forecast the 

outgoing longwave radiation (OLR) and surface air temperature (T2m) anomalies over the MC 

region. The prediction skill is measured by the correlation coefficients between forecasts and the 

observed values. Results show that when simple regression model is built using individual index 

separately, ENSO has the highest temporal correlation coefficients. However, it is the multiple 

regression models using a combination of all the climate indices with the inclusion of the 

persistence term that produce the most promising forecast skill at all the lags especially at first 

lead week with r = 0.74 and r = 0.77 for OLR and T2m respectively on the annual time scale. To 

add, multiple regression models with persistence exhibit satisfying correlation in all seasons 

except for DFJ especially after lead week-3 for OLR. For T2m, good correlation is obtained in 

MAM and JJA. Further evaluation using the root mean squared error skill score (RMSESS) 

support the potential use of utilizing the multiple regression models. Results suggest that the 

persistence term elevates the prediction skill for both OLR and T2m. 
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1. Introduction 

 

1.1 Maritime Continent 

 

One of the interesting feature possessed by the Maritime Continent (MC) lies on its 

location and its composition that comprises of a complex blend of islands, peninsula and water 

bodies. Thus, its weather and climate are heavily governed by the interaction between the lands 

and seas. The examples of the interactions are the land-sea breeze and monsoon activity on 

smaller and bigger scales respectively. The importance of the Maritime Continent as the biggest 

energy contributor to the global atmospheric circulation was highlighted through the work of 

Ramage (1968). It was pointed out that among the three tropical continental regions which serve 

as convective centres, it is the Maritime Continent that produces the highest amount of latent 

heat. Latent heat of condensation is released when water vapour is converted to moisture during 

condensation in the process of convection. A huge amount of energy is therefore discharged to 

the atmosphere originating from this region especially during boreal winter. 

 

The Maritime Continent is greatly affected by the monsoon system. Its two main 

monsoons are summer and winter monsoons corresponding to the boreal summer and boreal 

winter respectively with two transition periods in between them. Normally, the region will be 

associated with the wet condition during the northern hemisphere winter and dry condition 

during northern hemisphere summer. Aside from the monsoon system, the weather and climate 

variability of the Maritime Continents are also influenced by interannual and intraseasonal 

phenomena such as the El-Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO) 

and Quasi-Biennial Oscillation (QBO). Various studies have shown that all the above-mentioned 

oscillations have the capability of modulating the weather and climate globally. For this reason, 

it is natural to have the assumption that they could contribute to stronger and more direct effect 

on the Maritime Continent.  
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1.2 Climate Variability 

 

1.2.1 El-Niño Southern Oscillation (ENSO) 

 

On an interannual time scale, the most prominent form of natural phenomenon that 

influences the variability in the Maritime Continent is the ENSO. The ENSO is a coupled climate 

variability between the atmosphere and the ocean which occurs over the tropical Pacific Ocean. 

It is characterized by sea-surface temperature anomalies and linked to the changes in 

atmospheric circulation. The phases of the ENSO can be divided into three phases i.e the neutral, 

warm (El-Niño) and cold (La-Niña) phases. Climatologically or during the neutral phase of 

ENSO, the sea-level pressure over the eastern Pacific is much higher than the sea-level pressure 

over the western Pacific. This difference in east-west pressure gradient initiates easterly wind 

also known as the trade wind, to blow from South America to the Western Pacific. The air 

converges over the Western Pacific, moves upward, and sink over South America, completing a 

Walker circulation. During the El-Niño, the trade wind weakens and pull the convergence zone 

over the central Pacific instead, causing drought to develop over the Maritime Continent. 

 

Numerous research has been done between the associations of the ENSO with the 

Maritime Continent. In a broad sense, most of the findings agree that El-Niño tends to suppress 

the rainfall while La-Niña favors more rainfall over the Maritime Continent. Even though there 

is a contradiction of the final conclusion between the work by Haylock and McBride (2001) and 

Tangang and Juneng (2004), both of their work acknowledge that seasonality and geography can 

impose variation of ENSO affect towards the region. Haylock and McBride (2001), found a high 

correlation between Indonesian rainfall with ENSO during the monsoon transitions period and no 

relationship during the winter season. In contrast, Tangang and Juneng (2004) shown that ENSO 

correlates well with rainfall during fall and winter seasons. 
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1.2.2 Quasi-Biennial Oscillation (QBO) 

 

Another interannual oscillation that affects the Maritime Continent is the QBO. The QBO 

is a dominant modulator in the tropical stratosphere. It is a phenomenon whereby the zonal wind 

in the lower equatorial stratosphere alternate from westerly to easterly with an approximately 

two year period. Zonal stratospheric winds from the upper stratosphere will propagate to the 

lower stratosphere as time passes. The QBO westerly winds generally travel downward faster 

than the easterly wind but easterly winds are much stronger than its counterpart. One of the most 

widely accepted theories of the QBO was proposed through the work of Holton and Lindzen 

(1972). They postulated that the vertical propagation of tropical Kelvin and Rossby-gravity 

waves are responsible for providing westerly and easterly momentum to the upper atmosphere. 

While propagating vertically upward, both waves will meet a critical point where they will break, 

deposited their momentum in the zonal mean flow and eventually make up the QBO. 

 

Since its location and maximum amplitude occur at the equator and has been cited to 

have teleconnection with higher latitude atmospheric phenomenon such as the polar vortex, it is 

natural to assume that the QBO has a stronger and direct influence towards the Maritime 

Continent as they are collocated at a similar location. Plausible ways of the QBO to affect the 

Maritime Continent are by influencing the growth of convective clouds through the changes in 

static stability or by the modification of the zonal wind shear at the upper troposphere and lower 

stratosphere (Collimore et al. 2003). Deeper convective clouds could be expected during the east 

QBO (EQBO) phase and smaller convective clouds during the west QBO (WQBO) phase. The 

former case tends to boost the tropopause height through the upward motion in the mean 

meridional circulation, while the latter has the tendency to prohibit vertical development of the 

tropopause height. 
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1.2.3 Madden-Julian Oscillation (MJO) 

 

On an intraseasonal time scale, the largest contributor to tropical variability is the MJO. 

In contrast to the ENSO and QBO which are classified as stationary oscillations in which the 

former mainly reside over the tropical Pacific and the latter is locked over the equator, MJO 

migrates from one location to another. One of its prominent characteristics is the deep convection 

anomalies which usually originates over the Indian Ocean and slowly propagates towards the 

Pacific Ocean. As it propagates eastward, it causes fluctuation on the sea level pressure (SLP), 

sea surface temperature (SST), wind structure and rainfall. Often time, the Maritime Continent 

seems to hinder the strength of the MJO convective cell as it passes over the region. This is 

possibly caused by the lack of moisture and energy over the region due to strong diurnal 

convection, poor moisture convergence caused by topography and limited surface evaporation 

(Zhang 2005). 

 

 A common method of measuring the strength and location of the MJO is by utilizing the 

Real-Time Multivariate MJO Index (RMM Index) constructed by Wheeler and Hendon (2004). 

This index classified the phases of MJO based on the geography and the amplitude of the 

convection envelope with a total of eight phases. Each phase represents the particular location of 

the convective cells. For instance, phase two and three, phase four and five and phase six and 

seven indicate that the active convection cell is located over the Indian Ocean, Maritime 

Continent and Western Pacific respectively. Last but not least, the remaining two phases 

represent the location over West Africa. The magnitude can be interpreted as the distance of one 

point from the centre of the phase diagram of the RMM Index. 

 

Association of the MJO with the Maritime Continent was demonstrated by Tangang et al. 

(2008) where they investigated the possible role of atmospheric variables in causing an extreme 

flooding case that took place over the southern peninsula Malaysia. They suggested that the 

presence of the MJO over the Indian Ocean promote strong easterly over the Maritime 

Continent. The easterly wind enhances the southern peninsular Malaysian rainfall by two ways, 

one it inhibits the formation of the Borneo vortex. Normally, when the Borneo vortex is present, 

most of the rainfall will be concentrated over the western part of East Malaysia. Second, the 
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easterly winds strengthen the effect of the northeasterly wind. As the cold and dry northeasterly 

wind originating from the Siberian High get heats up as it passes over the warm tropical sea, it 

also merged with the warm and moist easterly from the Pacific Ocean leading to a more intense 

formation of convective clouds over southern peninsular Malaysia. 

 

Hidayat and Kizu (2010) investigated the pathways of MJO in affecting the rainfall 

variability over Indonesia. From their composite analyses, they found that phases of the MJO 

determine the amount of Indonesian rainfall. Different MJO phases will modulate different 

rainfall amount to a particular region. A diverse pattern of wet and dry phase can be observed 

over Indonesia when the MJO is in phase 1-4 and phase 5-8 respectively. A similar variation of 

rainfall and 850-hPa winds during boreal winter over the Maritime Continent at various MJO 

phases has also been documented in a study by Xavier et al. (2014). Their study concluded that 

the probability of rainfall increased for MJO phase 2-4 and the opposite for MJO phase 6-8 over 

the Southeast Asian (SE) region. 

 

The further relationship between the climate indices are shown in Figure 1 and Figure 2. 

Figure 1 depicts the OLR pattern when it is regressing with each of the climate indexes. The 

positive values indicate that the index and the OLR have the tendency to move in the same 

direction. The opposite can be said for the negative values. For instance, in panel (a), it can be 

seen that the Maritime Continent and ENSO index has a positive relationship. This implies that 

when the value of ENSO index increases, the values of the OLR over the Maritime Continent 

increases as well. The relationship pattern for OMI 1 and OMI 2 are shown in panel (b) and (c). 

Association of the climate index can also be expressed using a composite map. An example for 

this is Figure 2 where its show the pattern of the OLR for different QBO phases. 
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Figure 1 Regression map between the OLR with (a) ENSO Index (b) MJO – OMI 1 and (c) 

MJO – OMI 2  
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Figure 2 Composite OLR anomalies for the WQBO and the EQBO. 
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2. Objective 

The primary objective of the study is to investigate the usefulness of using simple and 

multiple regression methods to forecast the OLR and surface temperature over the Maritime 

Continent. Provided below are the justification of using the OLR and surface temperature as 

forecast variables in this study. 

 

The usage of OLR as a proxy for tropical convection is not new and has been practised in 

multiple studies such as in (Wheeler and Hendon, 2009). Negative (positive) OLR anomalies and 

their eastward propagation are in good agreement with positive (negative) rainfall anomalies and 

eastward migration of convective anomalies based on the work of (Hidayat and Kizu, 2010) 

which analyzed Indonesian station rainfall data. The OLR is more relevantly to be associated 

with big scale convection produced by large scale climate variability rather than the localized 

convection. Since we are dealing with the ENSO, QBO and MJO it is appropriate to use the OLR 

as another measure of precipitation. Examples of past studies that have established the influence 

of these natural oscillations with deep tropical convection in the Maritime Continent are the 

ENSO (Juneng and Tangang, 2005), MJO (Hidayat and Kizu, 2010) and the QBO (Collimore et 

al., 2003). 

 

The rationale of using the surface temperature is as the aftermath of the Malaysian 

heatwave episode happening in March 2016, in which has caused six cases of heat exhaustion 

and one death (Malaysian Ministry of Health, 2016). Moreover, a strong El-Niño episode like 

1997/98 could also impose changes on Maritime Continent surface temperature. The linkage of 

El-Niño to the rise in surface temperatures in Malaysia has been studied by Tangang et al. 

(2007), whereby it was found that the interannual variability of Malaysian temperature is largely 

dominated by the ENSO and that all region experience uniform warming during an El-Niño 

event. Additionally, the MJO has also been shown to have a connection with surface temperature 

variability in North America (Rodney et al., 2013; Johnson et al. 2014). However, little work has 

been done to a model surface temperature in the Maritime Continent using the MJO as a 

predictor. In his work, Collimore et al. (2003) have shown that the QBO exert an impact on 
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tropical tropospheric temperature but disregard its impact on surface temperature. Hence, we 

seek to investigate the usefulness of the QBO as a predictor of surface air temperature. 

 

The second objective is to examine the potential of using climate indices of ENSO, MJO, 

QBO and autocorrelation of the predictands as the predictors in the regression models. 

 

3. Methodology 

 

3.1  Data and Pre-processing 

 

In this study, we used climate indices of ENSO, MJO and QBO as the predictors for our 

statistical model. The indices were chosen as predictors based on the findings from the studies 

mentioned in the introduction as well as data availability. Additionally, Outgoing Longwave 

Radiation (OLR), taken as a proxy of convection and 2-metre surface temperature (T2m) were 

appointed as the predictand fields. Briefly, the predictor is an independent variable that could 

provide information to forecast the predictand. The predictand on the other note is the variable or 

parameter that need to be predicted, which is dependent on the predictor. 

 

3.1.1 The Predictors 

 

To construct the ENSO index, we used the sea surface temperature (SST) Version 1.1 of 

Hadley Center Global Ice and Sea Surface Temperature (HadISST1) provided by the United 

Kingdom Meteorological Office (UKMO) and is available in 1.0ᵒ x 1.0ᵒ resolution (Rayner et al. 

2003). The data are available at (http://www.metoffice.gov.uk/hadobs/hadisst/). The monthly 

SST data were interpolated to daily time series since the focus of the present study is for sub-

seasonal prediction. In order to characterize the ENSO variability, we calculated the Niño 3.4 

index by taking the area-averaged of the Pacific Ocean SST anomalies over the region of 5⁰S-

5⁰N and 170⁰W-120⁰W.  
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Outgoing longwave radiation (OLR)-based MJO index (OMI) has been chosen to 

represent the intraseasonal variability in this study as opposed to the commonly used Real-time 

Multivariate MJO index (RMM) by Wheeler and Hendon (2004). Based on a study by Kiladis et 

al. (2014), OMI is well correlated with the RMM but has more capability at tracking MJO 

convective signal. The OMI index was extracted from NOAA Earth System Research Laboratory 

(NOAA) and accessible through (http://www.esrl.noaa.gov/psd/mjo/mjoindex/). The OMI was 

formulated by projecting the 20-90 days band-pass filtered OLR onto two leading EOFs of the 

30-90-day eastward-filtered OLR. 

 

Currently, Medium-Range Weather Forecast Reanalysis (ERA-INTERIM) dataset (Dee 

et al. 2011) is considered to be the most accurate reanalysis product available. Therefore, we 

utilized the daily zonal mean zonal wind from ERA-INTERIM to calculate the QBO index. The 

QBO index was developed by calculating the area-averaged of zonal mean zonal wind anomalies 

at 50 hPa between 10⁰S-10⁰N. 

 

3.1.2 The Predictands 

 

Outgoing longwave radiation (OLR) was obtained from NOAA Earth System Research 

Laboratory (NOAA). It is a gridded daily OLR data and has a spatial resolution of 2.5⁰ x 2.5⁰ 

global grid (Liebmann and Smith. 1996). Another atmospheric variable that was chosen as the 

predictand was the daily surface temperature at 2-metre height (T2m). Similar to the zonal mean 

zonal wind, this dataset was taken from ERA-Interim in 1.5⁰ x 1.5⁰ grids. OLR and T2m were 

also used as one of the model predictors and included as the persistence term. 

 

The data between the time periods of 1979 - 2012 were used in the analysis of this paper. 

All daily mean anomalies were obtained by removing the climatological daily mean of the entire 

analyzed period for both predictors and predictands. Concisely, an anomaly is the deviation of 

certain variables from their long term average mean. Specifically for this study, we calculate the 

area-average of both OLR and the T2m anomalies as we are interested to capture the variation of 

both parameters over the Maritime Continent in the entire focus period. In contrast to the 

Maritime Continent portrayed in Ramage (1968) which include Malay Peninsula, Borneo, Java, 
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Sulawesi and New Guinea among other islands, we chose a smaller domain between 15ᵒS-8ᵒN 

and 95ᵒE-130ᵒE, illustrated in Figure 3 as our Maritime Continent focusing over Malaysia and 

Indonesia for the purpose of this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Statistical Modelling 

 

3.2.1 Linear and Multiple Regression Analysis 

 

The simple and multiple least-square linear regression methods were implemented in the 

development of the statistical models in this paper. These statistical models are classified as 

classic regression method as the prognosis are generated without any input from numerical 

weather prediction (NWP) and completely based upon statistical techniques (Wilks 2011).  

 

 

Figure 3 The Maritime Continent (MC) define as 95ᵒE-130ᵒE, 15ᵒS-8ᵒN. 
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For a simple linear regression model, the ultimate goal is to seek a one to one relationship 

between the dependent and independent variable. In the case where the association of one 

dependent variable to various independent variables is sought, the method is known as the 

multiple linear regression methods. Caution should be taken when selecting multiple variables to 

act as the predictors in the regression models. This is because the inclusion of more than one 

predictor does not necessarily contribute to a more accurate outcome. The statistical model for 

simple regression (1) and multiple regression (2) are  

 

                                               (1) 

       (2) 

 

where  is the predicted value of y, α is the regression slope, β is the coefficient and ε is the 

residual term. The residual term could be used as an indicator to gauge the performance of the 

regression model.  

 

3.2.2 Statistical Model Description 

 

In this current study, as mentioned before, we generate simple and multiple regression 

models to predict the OLR and surface temperature over the Maritime Continent. We started by 

creating simple regression model using each climate index as the predictor field. Therefore, we 

have four simple regression models built using ENSO, MJO-OMI 1, MJO-OMI 2 and QBO 

respectively for six different lead times.  

 

We divided our 34 years data into two non-overlapping subsets known as the training 

period (1979 – 2005) and the validation period (2006 – 2012). The training period is used to 

determine the regression coefficient while the validation period is used to verify the forecast 

skill. This partition is made to reduce the chances of inflation of skill by the model (Jolliffe and 

Stephenson 2003). The regression coefficient is responsible for storing the information between 

the predictor and the predictand which is subsequently used to build the regression model.  

 

 



13 

 

Next, we combined all the climate indices together as the predictors and repeated the 

same procedures to construct new regression model. Since more than one predictors are used in 

generating this forecast model, it is more befitting to call it as a multiple regression models 

instead of the simple regression model. The generic equation for simple and multiple regression 

models is described by equation (3) and (4) respectively 

 

 

 

 

where  is the forecasted predictand;  is the y-intercept;  and  are the 

regression coefficients corresponding to  and  which is ENSO, MJO-OMI 1, MJO-

OMI 2 and QBO index respectively;  is the specific climate index; and t+1 = 1-,2-,3-,4-,5-,6-

week which represent the predictors lead time. 

 

We later incorporate the persistence term in all of the models above. The persistence term 

can be defined as the current observation of the predictand (at t = 0) and is added in hope to 

increase the predictive capability of our models. The equation for the models with the inclusion 

of the persistence term is similar to (3) and (4) but with a new coefficient and variable to 

represent the persistence. The model built with just one climate index and persistence as 

predictors is given as (5) and the combination of all predictors and persistence is given as (6) 

 

 

 
 

 

Similar to the description given for equation (3) and (4),  and  is the predictand to be 

forecasted and y-intercept respectively. While  and  are the regression coefficients 

corresponding to ENSO, MJO-OMI 1, MJO-OMI 2 and QBO index; β is the specific climate 

index. The new addition to the equation are and  representing the persistence term.  

 

Using all of the regression models described above we calculate their annual and 

seasonal correlation coefficient and root mean square error skill score (RMSESS). The seasons 
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are specified by dividing a year into four seasons; December-January-February (DJF), March-

April-May (MAM), June-July-August (JJA) and September-October-November (SON) for 

boreal winter, spring, summer and fall accordingly. 

 

4. Results and Discussions 

 

We chose two metrics in order to evaluate the performance of our forecasts which are the 

correlation coefficient and the RMSE skill score. The correlation coefficient is broadly used as a 

verification metric in the atmospheric science field. It measures the linear relationship between 

the variables and as in our case, it represents the linear association between the forecasts and the 

observations. MSE on the other hand, measure the accuracy of the forecasts and observations. 

 

4.1 Correlation Coefficients 

 

We started the study by constructing simple regression model for each of our selected 

predictors which are ENSO, MJO-OMI 1, MJO-OMI 2 and QBO index separately using 

equation (3). Next, we are interested to investigate the performance of the regression model in 

the case where all of the predictors are accumulated together. For this purpose, we used equation 

(4) to build multiple regression models by combining all of the climate indices to generate the 

forecasts. As discussed earlier, the validation period is set to be independent of the training 

period to avoid any added skill caused by the overlapping of both periods.  

 

 Figure 4 illustrates the results of the correlation generated from the models mentioned 

above. Four simple regression models are represented by purple, green, light blue and yellow 

each corresponding to individual predictor namely, the ENSO, MJO-OMI 1, MJO-OMI 2 and 

QBO index respectively. The dark blue line, on the other hand, is the correlation corresponding 

to the combined indices model. As shown in Figure 4 (a), among the forecasts made with only 

single climate index as the predictor, the highest correlation coefficient is generated by the 

ENSO index at all lead times. For ENSO, the maximum correlation appears at lead week 3 and 

week 4 with r = 0.52, while the minimum value is r = 0.49 occurring at first and last lead week.  
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Correlation coefficients produce by the ENSO and the QBO show almost constant 

variation, while the MJO components display fluctuation from lead week-1 to week-6. Small 

variation by the ENSO and the QBO can be justified due to their nature as low-frequency climate 

oscillations while the rapid change in the MJO components are owing to their short time scale. 

Except for the ENSO, other single predictor models produce correlation less than r = 0.40 for all 

weekly lead time. However, it is the model with multiple predictors that produce the highest 

correlation coefficients than the other four simple regression models, with r = 0.65 at lead week-

1, and hovering at around r = 0.50 for the rest of the lead weeks. 

 

Depicted in Figure 4 (b) are the correlation coefficients obtained using equations (5) and 

(6) where we incorporate the persistence term in the regression models. Pronounce increase of 

the correlation coefficients can be seen in all of the models especially in first three lead weeks. 

As before, the best correlation coefficients come from the combined climate indices model. The 

correlation peak at r = 0.74 in week-1 and gradually decreasing to its lowest value in week-6 at r 

= 0.50. Although the highest correlation comes from the combined climate indices model, the 

biggest improvement of the correlation coefficients are experienced by models developed using 

the QBO, MJO-OMI 1 and MJO-OMI 2. With the addition of the persistence term, the 

correlation coefficients for these three models are relatively higher than the correlations before 

the inclusion of persistence term at all lead weeks. 

 

We repeated the same calculation for 2-metre surface temperature. Prior to the addition 

of the persistence term, all models exhibit low correlations between the forecasts and the 

observations. Forecasts made by multiple indices model and ENSO record modest correlations 

while MJO-OMI 1, MJO-OMI 2 and QBO have weak and negative correlations. However, when 

the persistence is included into the models, it enhances every model correlation at all lead times. 

All models share similar highest correlation which occurs in week-1 and steadily levelling off 

until the end of week-6. The overlapping of the correlation values in Figure 5 (b) suggests that 

the persistence has a substantial effect on temperature prediction over the Maritime Continent 

and the persistence tends to persist for few weeks. This characteristic could justify the high 

correlations through all six weeks when persistence is added to the models. 
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Figure 4 Correlation coefficients calculated in the validation period, 2006 – 

2012. (a) Except for the blue line (combined climate indices), all other 

correlation coefficients are obtained using one climate index as the predictor. 

(b) Same as (a) but with the inclusion of the persistence term. The predictand 

use for (a) and (b) is the OLR. 
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Figure 5 As in Figure 7 but the predictand use for (a) and (b) is the 

T2m. 
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Supported by the good performance shown by the model that uses all climate indices and 

persistence term as predictors for OLR and T2m on the annual time scale, we proceed the study 

by taking seasonality into account. Figure 6 implies that the persistence assists the increment of 

the correlations for OLR in all the seasons except for DJF starting at lead week-3 until the end of 

the lead week. Overall, the correlations with the absence of the persistence term are weaker than 

the correlations with the persistence. Highest correlations for the case with persistence are visible 

in SON and DJF. In SON, its correlations invariably surpass the correlations of the model 

without the persistence. For DJF, the model with persistence has higher correlations for the first 

two lead weeks, declining to its lowest r = 0.58 at lead week-4 before slowly rising until week-6. 

Model with persistence shows modest correlations for JJA while MAM experienced a declining 

trend throughout the lead times. 

 

 The variation of the Maritime Continent OLR probably due to its intimate linked with the 

life cycle of ENSO. The ENSO will normally start to develop in JJA, continuing to evolve during 

SON until it eventually peaks in DJF. The close relationship between the OLR and ENSO is 

clearly shown in Figure 6 where the seasonal correlations are strong in JJA, SON and DJF. This 

finding is supported by Tangang and Juneng (2004) which also acknowledged that the ENSO has 

good correlations with rainfall during SON and DJF. Meanwhile, in MAM, the ENSO is usually 

experiencing its decaying phase, hence the correlation between the OLR and the ENSO is weak 

during this season. As the strength of the ENSO is decreasing, the role of the local factors such 

as the land-sea breeze and the orographic convection begins to be more dominant. Not to 

mention, MAM is an inter-monsoon season in Malaysia where it is generally dry which results in 

a low rainfall variance. Therefore, the predictability for the OLR in MAM is small and it is 

portrayed in poor correlation values in seasonal correlation in MAM. 
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Figure 6 Seasonal correlation coefficients for six different weekly lead times 

using OLR as the predictand calculated in the validation period (2006 – 

2012). The solid bar is the correlation coefficient obtained with model that 

include the persistence term. Empty bar is the correlation coefficients 

generated by model without the persistence term. 
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From Figure 7, we can see the influence of seasonality on the correlations when the 

surface temperature is taken as the predictand. Seasonal correlations, especially for DJF and 

MAM, are generally higher than its annual correlation at all lead times, in the case where 

persistence is not included. Consistent with Figure 6, the influence of the persistence term is 

visible through all the seasons. Except for DJF and MAM, the present of the persistence in the 

model provide correlations that are constantly greater than the model without persistence. Model 

in MAM and JJA work particularly well for T2m. Using the Student’s t-test, correlations for 

MAM are significant at 0.10 significance level for all lead times. Also, correlations for JJA and 

DJF are significant at the same significance level up to lead week-3 and week-2 respectively (not 

shown). 

 

 The correlation magnitudes for temperature in this current study are in resemblance to the 

work that discussed the trend of temperature variability from Tangang et al. (2007). Through 

their seasonal EOF analysis, it is found that the largest explained variance (first mode) of the 

temperature takes place in winter. The amplitude of the power spectrum of this first mode peaks 

at two to five year range, suggesting that this particular mode is governed by interannual 

variability such as ENSO. Their study classified the seasons as follow October-November-

December (OND) and January-February-March (JFM) as the early and late stages of winter 

while April-May-June (AMJ) and July-August-September (JAS) are considered as the early and 

late stages of the summer monsoon in Malaysia. 

 

Concisely, the correlation between the anomalous surface temperature and El-Niño 

events in their study exhibit weak correlation during JAS but it continues to gain strength as the 

El-Niño continue to mature in the following months. The highest correlation is recorded during 

JFM. Similar results are reflected in our model that excludes the persistence where the 

correlations are weak in JJA and SON. They postulated that these low correlations could be 

because it is the early stage of El-Niño development. During the early development of the El-

Niño, the temperature is less influenced by the event. Furthermore, higher correlations in DJF 

and MAM, correspond to OND and JFM in Tangang et al. (2007) are said to be related to the 

peak of the El-Niño and the continuous warming in the western North Pacific.  
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It is hard to definitively pinpoint the individual influence of the QBO and the MJO or 

even for the ENSO, purely depending on the season alone. Fortunately, the ENSO tends to be 

phase-locked in winter and normally persists for the duration of two to five years. Hence, we 

could to some extent, deduce the results by linking it to the ENSO. Whereas this is not 

achievable for the QBO and the MJO. Previously, Collimore et al. (2003) study reveal that 

deeper convective clouds are likely to develop during the EQBO phase. In addition, Baldwin et 

al. (2001) stated that the phase of the QBO tends to transition from one phase to another during 

late spring and summer, i.e WQBO to EQBO and vice versa. Yet, without a proper separation of 

Figure 7 Same as in Figure 6 but using T2m as the predictand. 
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EQBO and WQBO, that information are rather not useful. Likewise, alluded to earlier studies, 

MJO too has strong phase dependence. Phase 4-6 has a higher impact on Maritime Continent 

rainfall and phase 3, 4, 7 and 8 impose influence in Canadian wintertime surface air temperature 

(SAT). 

 

4.2 RMSE Skill Score 

 

As briefly mentioned in preceding sections, RMSE is the measure of accuracy. In other 

words, it could also be called as the measure of error as it calculates forecasts deviation from the 

observation values. Smaller RMSE implies smaller forecast errors. The benefit of using RMSE 

rather the MSE is that the RMSE will maintain the same unit as the variable which later will aid 

the comparison of the magnitude of the forecast error. Since we are using the climatology as the 

reference forecast in this present study, we are aiming for positive RMSESS for our forecast 

model to have better performance than the climatology. 

 

 Figure 8 shows the RMSESS for forecast model with and without persistence term using 

OLR as the predictand. The solid bar represents the skill score produced by the model which 

include persistence term while the empty (white bar) for the model without persistence. When 

we exclude the persistence term from the model (white bar), we can see that the model does have 

some skill over the climatology as they are able to yield positive RMSESS. This is especially 

true for DJF as it gives RMSESS = 0.43 at the first lead week and maintains a good score until 

the end of the lead week with RMSESS = 0.23. RMSESS is weak for JJA and SON with skill 

score lingering at 0.15 to 0.10 but nonetheless signify a better performance than climatology. 

The worst score for this case comes from MAM. Even though the score at the first week is 0.20, 

it experiences a rapid decline throughout the lead week. By lead week 3, the forecast generated is 

equal to the climatology and for the rest of the week, the scores are negative implying poor 

forecast performance. 

 

 In the occasion where the persistence is included (solid bar), the RMSESS depict a 

considerable increase from the case of without persistence. In most cases, the highest score can 

be seen at week-1 and steadily decline by week-6. Overall, there is skill improvement in all the 
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seasons over the whole time range with skill score advantage up to 0.20, with the exception of 

DJF. We see that in DJF, the model with persistence has higher scores in the first two lead weeks 

with an increase of 0.06 and 0.05 respectively from its counterpart. However, from lead week 3 

onwards, the RMSESS of the model without persistence surpass the RMSESS of the model with 

persistence. This result suggests that the better forecast for week 3 ahead could be obtained even 

without taking the persistence term into account.  

 

 Again, we repeat the same calculation of the RMSESS for the surface temperature for 

both models and the result is demonstrated as in Figure 9. Different from the OLR that indicate 

that model without persistence does have the potential to be used to generate seasonal forecasts, 

the same implication could not be applied to the case of T2m. Referring to the empty bar (white 

bar), except in MAM which has skill score ranging from 0.09 to 0.16 in all weekly lead, the 

scores for the other seasons are mainly equal to the climatology or at some cases the scores 

reflect that the model has poorer skill as to when the climatology are used to make the prediction. 

Without persistence, the worst score is seen in DJF where the score in all lead week is negative. 

 

 Compared to the model without persistence, the RMSESS of the model with persistence 

is significantly higher. Over this period of six lead weeks, the pattern of the RMSESS is uneven 

across the four seasons. Skill score in DJF and SON show a decreasing pattern, while the other 

two seasons show fluctuation in the skill scores. The most dramatic increase of the RMSESS is 

in DJF, where the score is enhanced more than twice than that of without persistence. Other 

seasons also indicate the promising performance of this particular model. 

This result supports the practicality of including the persistence term, as it has successfully 

proved that it helps boost the skill score in both OLR and T2m. 
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Figure 8 Seasonal RMSE skill score for six different weekly lead times using OLR as 

the predictand calculated in the validation period (2006 – 2012). The solid bar is the 

skill score obtained with model that include the persistence term. Empty bar is the skill 

score generated by model without the persistence term. 
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Figure 9 Same as in Figure 8 but using T2m as the predictand. 
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5. Conclusions 

 

This present study used simple and multiple regression methods to forecast the OLR and 

surface air temperature over the Maritime Continent using the possible predictability provided by 

main climate indices, namely the ENSO, the QBO and the MJO. The selection of the predictors 

are based on the successfulness of preceding works that had utilized the predictors either 

individually or by taking the combination of them. The works employing the pure statistical 

model over Maritime Continent is rather limited, thus motivated by this, we are interested to 

investigate the possible prediction opportunity given the information by the ENSO, QBO, MJO 

as well as the persistence term. 

 

At the first part of the study, we constructed regression model using single predictor to 

assess their respective skill. For both predictands, the model developed using the ENSO has 

shown the best and consistent performance than the other three predictors. Despite the good 

performance from the ENSO model, the performance from the model with a combination of all 

available predictors outdo the ENSO model. Due to this, we proceed the next part of the study 

using the combination model instead of the simple model. The evaluation of the model is done 

by calculating the correlation coefficient and RMSE skill score on the annual and seasonal time 

scale. 

 

Throughout the study, the persistence term (autocorrelation) show that it has its own 

distinct signature. In a way, it facilitates the correlation and skill scores values in most cases 

discussed above. The persistence term helps the model in the sense where it takes account of the 

current conditions of a certain variable and subsequently provides that information for the 

forecast calculation. However, the persistence is less effective to be used in DJF for lead above 

week-3 as evident in the correlations for OLR and T2M. Perhaps, the existence of the occasional 

cold surges from the Siberian High disturbs the efficiency of the persistence term during the 

boreal winter. Moreover, as the persistence is defined as the degree of similarity of a past value 

of variables to their future values, it inevitably decreases as the number of lag increases. 
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 As has been noted, better results could be attained if specific cases, such as strong El-

Niño and MJO events and the particular phase of the MJO (phase 3, 4 and 5) and QBO are 

considered in this study. We optimistically believe that adding specific phase of the MJO could 

reduce the residual of our multiple regression models (not shown). Nonetheless, even without 

this definitive conditions, the inclusion of the MJO components, having the ability to supply 

prediction skill of 15 -20 days, not to forget the influence of QBO, in our multivariable 

regression model is justified with the improvement of the annual and seasonal correlations and 

RMSE skill scores. However, whether or not this model has any practicality to be integrated into 

operational weather forecasting requires extra justifications with an appreciable amount of 

refinement and adjustment in the future work. 
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